
Whitepaper

Standaridizing
Open Source
Inventorying
The first
built for developers & modern DevOps organizations.

Open Source Inventory Engine

2/10

Content

SCANOSS: Standardizing Open Source Inventorying

Background

SCA tooling that fits a modern DevOps environment 03

04
05
05
06
07
07
07
09

Questions?

Please get in touch through
or

https://www.scanoss.com

info@scanoss.com

Redefining SCA: The first Open Source solution
Open Platform Architecture

Open SBOM (Software Bill of Materials)

Open Indexing Algorithm (‘Winnowing’)

Open Database Engine

Open Inventory Engine

Open RESTful API

Open Webhook & Command-line Interface

Open Mining tool (Minr)

SCANOSS: Standardizing Open Source Inventorying

3/10

Background

SCA Tooling That Fits a Modern DevOps Environment.

Software Composition Analysis (SCA) tools perform analysis,
comparison and identification of Open Source components. Sadly,

none of the SCA vendors have embraced Open Source themselves.

The proprietary nature of their tools leads to struggle at the customer
side. Customers fall into vendor lock-in scenarios and it is very difficult
to integrate these tools into their existing infrastructure. This leads

to expensive post-processing of results, expensive maintenance

of glue code, slow performance and increased hardware costs.

SCA tools were originally conceived with the specific purpose

of creating a Software Bill of Materials (SBOM) from static snapshots

of source trees. The SBOM quickly became a de facto requirement

for due diligence processes during M&As, but also gained traction

as part of pre-delivery audits at the end of development cycles.

However, development teams have started to struggle to adopt these
tools in continuous development environments. Given the closed nature
of existing SCA tooling, it’s hard to integrate them in the development
process and even harder to compare the results. There is a clear need
for modern development teams to start left in the development process
by performing continuous validations, rather than waiting

for a final audit.

Software Development is a continuous process. Performing audits

on static source code is costly and the result is most likely obsolete

by the time assessment is completed. Open Source Inventorying

will expose interfaces that allow natural integration to the validation
process of a modern DevOps environment.

SCANOSS: Standardizing Open Source Inventorying

4/10

SCANOSS believes now is the time to reinvent Software Composition
Analysis with a goal of ‘start left’ and a focus first on the foundation

of reliable SCA, the SBOM. An SBOM that does not require a small army
of auditors to make it usable. So, SCANOSS provides an SBOM that that
is ‘always on’.

SCANOSS now releases the first entirely Open Source software platform
for Open Source Inventorying, specifically designed for modern
development (DevOps) environments. The platform includes:

The complete SCANOSS-platform is released as Open Source. The pillar

of the architecture is an OpenAPI compliant RESTful API that exposes

functionality for the inventory engine to be interfaced from CI/CD tools
as well as a full set of features for OSS auditing and other

user interfaces.

� Open Data Mining tool (minr)�
� Open Database Engine (ldb)�
� Open Inventory Engine & SBOM�
� Compliant RESTful API�
� Webhooks and Command Line Interface (CLI)

REDEFINING SCA: the first open source
solution

Open Platform Architecture

SCANOSS: Standardizing Open Source Inventorying

WEBHOOK

API

COMMAND

LINE UI

IDE

PLUGINS

GITHUB

APP

INVENTORY

ENGINE

LDB

ENGINE

USER

INTERFACE USER

AUTHENTICATION

PROVISIONING

SCANOSS

KNOWLEDGE

BASE

The pillar

of our
architecture:

a RESTful API

Client-side applications and middleware connect to the RESTful API

via https. The API handles interaction with the Inventory Engine,

which uses the LDB interfaces to query the database.

The SCANOSS platform uses indistinctively SPDX or CycloneDX (in their

JSON variant) as the core SBOM storage format. XML variants are also

supported both for importation and exportation of SBOMs.

Open SBOM (Software Bill of Materials)

The knowledge base stores source code fingerprints for entire files and
code fractions (snippets). These fingerprints are used for matching

source code during analysis. Full file fingerprints have been
standardized by using cryptographic hash algorithms, such as MD5 and
SHA. However, looking at the market for SCA tooling, there are no
standards defined for comparing snippets. SCA vendors implement their
own proprietary algorithms for calculating snippet fingerprints, which
means it is virtually impossible to compare results from different tools.
Moreover, the proprietary nature of such algorithms imply that closed
binaries are used for performing analysis, which is always a concern
given the sensitive nature of corporate source code.

Open Indexing Algorithm (https://github.com/scanoss/wfp)

5/10

SCANOSS: Standardizing Open Source Inventorying

SCANOSS uses an open algorithm known as Winnowing, that has been

used extensively in academic circles to obtain and compare
fingerprints from documents and source code. These fingerprints

are used to detect plagiarism against known texts and source code.
There are several open source implementations of the Winnowing
algorithm available today. Given the wide adoption and broad
availability of open source implementations, SCANOSS has adapted

this algorithm for indexing and comparing massive amounts

of source code.

Further details and source code available at:

https://www.scanoss.com/winnowing.html

One of the main challenges faced by SCA tool manufacturers given

thevast number of data records, is the performance of existing
database engines and the overall database footprint.

Comparing a single file may require hundreds of database queries.

In a large source code project, the latter easily multiplies to millions

of database queries. This means query performance becomes critical.

In database terms the requirement is to perform very simple queries

on a perfectly balanced tree of numeric keys. Given such simple
requirements, the broad set of features offered by general purpose

SQL or NoSQL database engines becomes an expensive overhead.

SCANOSS designed a database engine specifically for this use case
andhas already passed the 2 trillion fingerprints mark. SCANOSS’
DatabaseEngine (called: ‘LDB’) organizes data in mapped linked lists,
enablinghardware-speed searches. Comparisons are performed in
microseconds,which allows the scanning of thousands of files per
second while thedatabase footprint is kept to a bare minimum and can
be distributed across devices.

Open Database Engine (https://github.com/scanoss/ldb)

6/10

SCANOSS: Standardizing Open Source Inventorying

The SCANOSS Inventory Engine performs comparison of source code
against the Open Source Knowledge Base using the provided LDB
Database interfaces.

Analysis is performed either on source code files or on pre-calculated
Winnowing fingerprints. Output is presented in JSON format.

The SCANOSS API interfaces with the Inventory Engine and provides

multiple functionality for Audit Management, User Management,

Provisioning, Project Management, Authentication and Authorisation.

Reference code is provided with the API, including an auditing

UI and a Webhook and a Command Line Interface scanner (scanner.py).

The SCANOSS Webhook features integration to the main software
repository providers and enables a secured & automated source-code
check that triggers upon every Git PUSH. The Webhook automatically
retieves the changed files along with the optional Open Source Assets
declaration and posts them to the inventory server for analysis.

The build status for the commit is automatically updated

and a comment is posted highlighted by a SCANOSS badge.

If the presence of an undeclared Open Source asset is detected,
regadless of whether it is a complete file or a small code snippet,

the commit is marked as "build failed" and a "failed" badge is added

to the commit comment, regardless of whether it is a complete file

or a small code snippet.

Open Inventory Engine (https://github.com/scanoss/engine)

Open RESTful API (https://github.com/scanoss/API)

Open Webhook (https://github.com/scanoss/webhook)

7/10

SCANOSS: Standardizing Open Source Inventorying

SCANOSS.py is a Python client that performs direct recursive scanning
of the provided directory, among many other things.

The scan is performed using the SCANOSS API.

Fragment sample use of the scanner.py CLI:

Open Command-line Interface

(https://github.com/scanoss/scanoss.py)

8/10

scanoss-py scan .

Searching . for files to fingerprint...

Scanning fingerprints...

{

 "Dockerfile":[

 {

 "id": "none",

 "server": {

 "hostname": "p8",

 "version": "4.3.4",

 "flags": "0",

 "elapsed": "0.000054s"

 }

 }

],

 "version.py":[

 {

 "id": "file",

 "status": "pending",

 "lines": "all",

 "oss_lines": "all",

 "matched": "100%",

 "purl": [

 "pkg:github/scanoss/scanoss.py",

 "pkg:pypi/scanoss"

],

 "vendor": "scanoss",

 "component": "scanoss.py",

 "version": "0.6.11",

 "latest": "0.6.11",

 "url": "https://github.com/scanoss/scanoss.py",

 "release_date": "2021-10-18",

 "file": "version.py",

 "url_hash": "b80bc2e3d5dfa13f6a6c26ae44c824d8",

 "file_hash": "7c4e6ef45455b344810945caf995ded7",

 "file_url": "https://osskb.org/api/file_contents/7c4e6ef45455b344810945caf995ded7",

 "dependencies": [],

 "licenses": [

.... Continues

SCANOSS: Standardizing Open Source Inventorying

9/10

The SCANOSS Mining Tool (called: ‘Minr’) is a command-line tool

that performs download, extraction and indexing of a source code
component. The tool is released as Open Source with the purpose

of allowing users to create their own source code knowledge bases.

The arbitrary creation of knowledge bases can have a myriad

of applications. E.g. a company could create a knowledge base

of proprietary code to detect the unwanted release of an IP.

A different application could be performing a comparison against

only a designated set of OSS components.

Open Mining Tool (https://github.com/scanoss/minr)

Minr fetches the components and subsequently generates component,
file and snippet data. Minr can be launched in a number of instances,
from any number of machines and the resulting data can be joined

by simple concatenation, to be inserted into the knowledge base

at a later point in time.

$ minr scanoss, scanner.py, 1.0 http://github.com/scanoss/scanner.py/
archive/1.0.tar.gz

Downloading
Completed in 0.858s

$find mined -not -empty

http://github.com/scanoss/scanner.py/archive/1.0.tar.gz

mined

mined/sources

mined/sources/2b29.mz

mined/components

mined/files

mined/files/2b.csv

mined/snippets/24.bin

mined/snippets/38.bin

...

mined/snippets/6f.bin

mined/snippets/7b.bin

Example use of the SCANOSS Minr tool:

The SCANOSS Platform is made entirely available entirely as Open
Source. The collaboration guidelines are available in the source code
tree. Questions and suggestions are welcome at

https://www.scanoss.com

SCANOSS offers commercial agreements with access to its complete
Knowledge Base, additional features and Service Level Agreements.

Please contact for further information.info@scanoss.com

Open Mining Tool (https://github.com/scanoss/minr)Get involved

Get in touch

The information in this paper is provided "as is", without warranty of any kind,

express or implied, including but not limited to the warranties of merchantability,

fitness for a particular purpose and noninfringement. In no event shall SCANOSS Ltd.

be liable for any claim, damages or other liability, whether in an action of contract,

tort or otherwise, arising from, out of or in connection with the information hereby
provided. Subject to changes and errors. The information given in this document contains
only general descriptions and/or performance features which may not always specifically
reflect those described, or which may undergo modification in the course of further
development of the products. The requested features and their performance are binding
only when they are expressly agreed upon in the concluded contract.

Published on 2020-07-08 by SCANOSS.com

